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We report here a study of torsional barriers to rotation
about single bonds of charge-transfer complexes. Despite
wide theoretical® and biological® interest in charge-transfer
complexes, there have been few previous measurements of
the effect of such association on internal rotation.? Two
systems were investigated. Internal rotation rates were de-
termined about the central nitrogen-carbon bond of N,N-
dimethyldithiocarbamic acid methyl ester (1) in the pres-
ence and absence of an acceptor, Io. Rotation rates were
also determined about the nitrogen-aryl bond of N-
methyl-2,4,6-trinitroaniline (2) in the presence and absence
of a donor, N,N-dimethylaniline. Charge-transfer com-
plexes of 1 with Iy and 2 with N,N-dimethylaniline fall into
the “n-ac” 3% and “br—ar” 3 classifications, respectively.
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Rotation rates of 1 were evaluated by 'H NMR line-
gshape analysis of the singlet-to-doublet transition of the
N-methyl signal. Selection of 1 for this work was based on
two considerations. First, the N-methyl signal coalesces
near room temperature (38°). This precluded the need to
attain high temperatures (where complexes dissociate) or
low temperatures (where evaluation of the static NMR pa-
rameters is difficult). An even more important reason for
choosing 1 stemmed from the sizable association constant
found for 1 and Is (Kussoc = 222 M1 at 25.0° in chloroben-
zene). Favorable binding is necessary to obtain kinetic ef-
fects sufficiently large to interpret meaningfully. There is
evidence that Is complexes with 1 at the thiocarbonyl site’.
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Figure 1. Line A: Arrhenius plot of log kobsa (sec™) vs. the recip-
rocal of the temperature (K) for rotation of 1 in chlorobenzene in
the absence of Is. Line B: Arrhenius plot of log Egpeq vs. 1/T for
rotation of 0.100 M 1 and 0.208 M 15 in chlorobenzene. Line C: Ar-
rhenius plot of log k. (see eq 1) vs. 1/7.

Rates of internal rotation of 0.100 M 1 in chlorobenzene
at several temperatures between 21 and 51° (Figure 1, line
A) afforded the following activation parameters: AGlggg =
15.88 kcal/mol,® AH? = 15.1 keal/mol, and AS* = ~1.4 eu.
Doubling the concentration of 1 had no effect on the rate
constants. When 0.208 M I, was added to the solution, the
rate of internal rotation® decreased (as manifested, for ex-
ample, by elevation of the coalescence temperature from 38
to 61°). A plot of log kopsg vs. 1/T is given in Figure 1, line
B. The observed rate data could also be analyzed in terms
of the scheme shown in eq 1. In order to extract k. (the rate
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of internal rotation of the complex itself), it was necessary
to evaluate Kagsoc Using a spectrophotometric method
based on the Ketelaar equation.1®1! K, .. was found to
equal 222 £ 1 M~1 at 25.0° and 62.9 & 1 M~! at 55.0°.12
Thus, 96.1% of 1 exists in the complexed state at 0.100 M 1
and 0.208 M I at 25.0°. Values of C (the concentration of
complex) and k¢ (the rotation rate in the absence of Io)
were inserted into eq 2 to obtain k. values at several tem-
peratures.!? We find that kg is 37 times greater than k. at
25.0°, indicating that complexation with Iy retards rota-
tion. An Arrhenius plot of k. is shown in Figure 1, line C.
From this plot we estimate that AG¥zes = 18.1 + 0.1 keal/
mol; this is 2.2 kcal/mol greater than that of the uncom-
plexed substrate.1*

ovsa = kO([’lbﬁi—[C’U + kc<%ﬁ]—0> (2)

Rotation rates about the bond joining the amine nitrogen
to the aryl group in N-methyl-2,4,6-trinitroaniline (2) were
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determined from the NMR line shape of the aryl proton
signals. Two experimental problems hampered the study of
rotation of 2 when complexed with N,N-dimethylaniline:
(1) low temperatures were necessary to bring rotation of 2
within the NMR time scale (T of aryl protons = —55° in
acetone) and (2) the complex has a relatively small associa-
tion constant (Kgssoc = 2 M~1 at —60° in acetone). It was
therefore not possible to analyze the kinetics in terms of eq
1. However, we did establish that the effect of =—= com-
plexation is small. When 57% of 2 is complexed, the rota-
tion rate increases only twofold (barely larger than the ex-
perimental error).

In summary, we have found that n-o complexation of 1
to an acceptor decreases its rate of rotation, whereas m—m
complexation of 2 to a donor causes only a small rate per-
turbation. These findings bear on the controversial ques-
tion of whether weak donor-acceptor complexes are pri-
marily stabilized by electron transfer (“charge-transfer”
model%) or by van der Waals forces (“electrostatic” mod-
€l16-18) On the basis of our results with the 7—r complex of
2, we can conclude that either electron transfer between
the 7 donor and = acceptor is insignificant or else electron
transfer does not appreciably affect internal rotation in the
acceptor. The latter appears unlikely, especially in view of
the claim that a small degree of charge transfer can have a
large effect on vibrational spectra and other properties.!® A
firm decision between the possibilities must, of course,
await theoretical calculations. Electron transfer is more
probable in the complex between 1 and I, because, accord-
ing to the parameters of Drago and Wayland,2® both the
donor and acceptor possess strong charge-transfer proper-
ties. Since AG? for rotation of 1 is insensitive to a wide
range of protic and aprotic solvents,® nonspecific medium
effects (including hydrogen bonding) have little affect on
rotation. Therefore, actual electron transfer is a likely
cause of the modified rotational barrier.

Experimental Section

Materials. N,N-Dimethyldithiocarbamic acid methy! ester (1)
and N-methyl-2,4,6-trinitroaniline (2) were preppared according
to published procedures.?1:22 Chlorobenzene was distilled over
P305 and again over KyCO:s.

Kinetics. Rate constants for rotation were calculated with the
aid of an RCA Spectra 70/565 computer which adjusts 7 (the recip-
rocal of 2kobsa) 80 as to minimize deviations between experimental
and theoretical spectral parameters.22 NMR spectra were recorded
with a Jeol JNM-MH-100 spectrometer equipped with a variable-
temperature probe. Temperatures, calculated by the equation of

Notes

Van Geet,?* were measured before and after each run and are be-
lieved to be accurate to +0.5°. Six to eight spectra were traced in
both directions at each temperature, and the resulting rate con-
stants were averaged. An optimum constant homogeneity was
achieved by adjusting the resolution control prior to each run
while observing the SCHj signal, This peak also provided an esti-
mate of the effective relaxation times (79’s). Spectra were ob-
tained using a sweep width of 54 or 108 Hz, sweep time of 250 sec,
filter band width of 10 Hz, and radiofrequency field of 0.1 mG.

Registry No.—1, 3735.92-0; 2, 1022-07-7; I, 7553-56-2; N,N-
dimethylaniline, 121-69-7.
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