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We report here a study of torsional barriers to rotation 
about single bonds of charge-transfer complexes. Despite 
wide theoretical3 and biological4 interest in charge-transfer 
complexes, there have been few previous measurements of 
the effect of such association on internal r ~ t a t i o n . ~  Two 
systems were investigated. Internal rotation rates were de- 
termined ahout the central nitrogen-carbon bond of N,N- 
dimethyldithiocarbamic acid methyl ester (1) in the pres- 
ence and absence of an acceptor, 12. Rotation rates were 
also determined about the nitrogen-aryl bond of N- 
methyl-2,4,6-trinitroaniline (2) in the presence and absence 
of a donor, N,N-dimethylaniline. Charge-transfer com- 
plexes of 1 with I2 and 2 with N,N-dimethylaniline fall into 
the “n-ad’ 3 s 6  and “ b r - a d ’  classifications, respectively. 
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Rotation rates of 1 were evaluated by IH NMR line- 
shape analysis of the singlet-to-doublet transition of the 
N-methyl signal. Selection of 1 for this work was based on 
two considerations. First, the N- methyl signal coalesces 
near room temperature (38”). This precluded the need to 
attain high temperatures (where complexes dissociate) or 
low temperatures (where evaluation of the static NMR pa- 
rameters is difficult). An even more important reason for 
choosing 1 stemmed from the sizable association constant 
found for 1 and I2 (K,,,,, = 222 M-l  at  25.0’ in chloroben- 
zene). Favorable binding is necessary to obtain kinetic ef- 
fects sufficiently large to interpret meaningfully. There is 
evidence that 12 complexes with 1 at  the thiocarbonyl site7. 
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Figure 1. Line A: Arrhenius plot of log kabsd (sec-’) vs. the recip- 
rocal of the temperature (K) for rotation of 1 in chlorobenzene in 
the absence of 12. Line B: Arrhenius plot of log kobsd vs. 1/T for 
rotation of 0.100 M I and 0.208 M 12 in chlorobenzene. Line C: Ar- 
rhenius plot of log k, (see eq 1) vs. 1/T. 

Rates of internal rotation of 0.100 M 1 in chlorobenzene 
at several temperatures between 21 and 51’ (Figure 1, line 
A) afforded the following activation parameters: AGl,g, = 
15.88 kcal/mol,* A@ = 15.1 kcal/mol, and A S i  = -1.4 eu. 
Doubling the concentration of 1 had no effect on the rate 
constants. When 0.208 M 1 2  was added to the solution, the 
rate of internal rotationg decreased (as manifested, for ex- 
ample, by elevation of the coalescence temperature from 38 
to 61O). A plot of log kobsd vs. 1/T is given in Figure 1, line 
B. The observed rate data could also be analyzed in terms 
of the scheme shown in eq 1. In order to extract k ,  (the rate 

M kc tl kc 

of internal rotation of the complex itself), it was necessary 
to evaluate K,,,,, using a spectrophotometric method 
based on the Ketelaar equation.l0Jl K,,,,, was found to 
equal 222 f 1 M-l  at  25.0’ and 62.9 f 1 M-I a t  55.0°.12 
Thus, 96.1% of 1 exists in the complexed state a t  0.100 M 1 
and 0.208 M 12 a t  25.0’. Values of C (the concentration of 
complex) and ko (the rotation rate in the absence of 12) 
were inserted into eq 2 to obtain k ,  values a t  several tem- 
p e r a t u r e ~ . ~ ~  We find that ko is 37 times greater than k, a t  
25.0°, indicating that  complexation with 12 retards rota- 
tion. An Arrhenius plot of k ,  is shown in Figure 1, line C. 
From this plot we estimate that AGT29, = 18.1 d~ 0.1 kcal/ 
mol; this  is 2.2 kcallmol greater t h a n  tha t  of the  uncom- 
plexed substrate.  l4 

Rotation rates about the bond joining the amine nitrogen 
to the aryl group in N-methyl-2,4,6-trinitroaniline (2) were 
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determined from the NMR line shape of the aryl proton 
signals. Two experimental problems hampered the study of 
rotation of -2 when complexed with N,N-dimethylaniline: 
(1) low temperatures were necessary to bring rotation of 2 
within the NMR time scale ( T ,  of aryl protons = - 5 5 O  in 
acetone) and (2) the complex has a relatively small associa- 
tion constant (K,,,,, = 2 M-l  a t  -60' in acetone). I t  was 
therefore not possible to analyze the kinetics in terms of eq 
1. However, we did establish that the effect of K-K com- 
plexation is small. When 57% of 2 is complexed, the rota- 
tion rate increases only twofold (barely larger than the ex- 
perimental error). 

In summary, we have found that n-u complexation of 1 
to an acceptor decreases its rate of rotation, whereas K-K 
complexation of 2 to a donor causes only a small rate per- 
turbation. These findings bear on the controversial ques- 
tion of whether weak donor-acceptor complexes are pri- 
marily stabilized by electron transfer ("charge-transfer" 
model15) or by van der Waals forces ("electrostatic" mod- 
e1l6-l8). On the basis of our results with the K-K complex of 
2, we can conclude that either electron transfer between 
the K donor and K acceptor is insignificant or else electron 
transfer does not appreciably affect internal rotation in the 
acceptor. The latter appears unlikely, especially in view of 
the claim that a small degree of charge transfer can have a 
large effect on vibrational spectra and other ~ r 0 p e r t i e s . l ~  A 
firm decision between the possibilities must, of course, 
await theoretical calculations. Electron transfer is more 
probable in the complex between 1 and 12,  because, accord- 
ing to the parameters of Drago and Wayland,20 both the 
donor and acceptor possess strong charge-transfer proper- 
ties. Since AGt for rotation of 1 is insensitive to a wide 
range of protic and aprotic solvento,s nonspecific medium 
effects (including hydrogen bonding) have little affect on 
rotation. Therefore, actual electron transfer is a likely 
cause of the modified rotational barrier. 

Experimental Section 
Mater ia ls .  N,N-Dimethyldithiocarbamic acid methy l  ester (1) 

and N-methyl-2,4,6-trinitroaniline (2) were preppared according 
t o  publ ished procedures.21J2 Chlorobenzene was dist i l led over 
Pz05 and again over K2C03. 

K ine t ics .  Rate constants for ro tat ion were calculated w i t h  the  
a id  o f  a n  RCA Spectra 70/55 computer which adjusts r (the recip- 
rocal of 2kobsd)  so as t o  min imize deviations between experimental 
and theoretical spectral  parameter^.^^ NMR spectra were recorded 
w i t h  a Jeol J N M - M H - 1 0 0  spectrometer equipped w i t h  a variable- 
temperature probe. Temperatures, calculated by the equation o f  

V a n  Geet,24 were measured before and after each run and are be- 
l ieved to  be accurate t o  f0.5'. Six t o  eight spectra were traced in 
b o t h  directions a t  each temperature, and the result ing rate con- 
stants were averaged. An opt imum constant homogeneity was 
achieved by adjusting the resolut ion control pr ior  t o  each run 
while observing the SCH3 signal. Th is  peak also provided an esti- 
mate of the effective relaxation times (7'2's). Spectra were ob- 
tained using a sweep w i d t h  of 54 or 108 Hz, sweep t ime of  250 sec, 
f i l ter  band w i d t h  o f  10 Hz, and radiofrequency f ie ld  o f  0.1 mG. 

R e g i s t r y  No.-I, 3735-92-0; 2, 1022-07-7; 12, 7553-56-2;  N,N- 
dimethylani l ine, 121-69-7. 
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